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discrete crystalline and amorphous phases, all of
the diluent being confined to the amorphous phase.
These lines represent the change in temperature
required for maintenance of equilibrium as the
composition of the amorphous phase is altered by
transfer of polymer from one phase to the other in
the course of melting.

This calculation has been performed on the basis
of the familiar relationship”*

T = 1/Tw* = (R/AH)(Vo/VOlo — (BVi/RT)w? (7)

where Tm™ is the melting point of the undiluted
polymer,®® 410.2°K. in this instance; V./V: de-
notes the ratio of molar volumes of the structural
unit (C;Hy) and the diluent, its value being 0.2415,
with negligible dependence on temperature; AH,
= 1940 cal. mole~! is tlie heat of fusion per unit, B
= 1.5 cal. cc.~! represents the polymer-diluent in-
teraction?® and ; is the volume fraction of diluent in
the amorphous phase coexisting in equilibrium
with crystalline polymer. In compliance with the
assunmiption introduced above, we take

v = 0%/ (00 + (1 — v (8)

A being that fraction of the polymer which occurs in
the amorphous pliase; 2,° is the nominal volume
fraction of diluent calculated from the weights and
specific volumes of the two components. Sub-
stitution of eq. 8 in 7 provides a relationship be-
tween 7 and the degree of crystallinity 1 — X. The
thus calculated (theoretical) degrees of crystallinity
are readily translated to specific volumes using eq.
3 and assuming additivity of volumes with respect
to the diluent. The dashed lines in Fig. 3 have been
deduced in this manner.

It is to be noted that Ty * and AH, are independ-
ently known. The value of B rests on application

(28) Inasmuch as the melting points for the polymer samples vary
somewhat, being generally slightly less than T,9 for the precisely
linear polymer of infinite chain length, we introduce the symbol
Tm* to represent the melting point of a given pure polymer sample in
absence of diluent.

(29) The values of AHy and B originally reported by Quinn and
Mandelkern? were subject to a numerical error.  We are indebted to
Quinn and Mandelkern for communicating the corrected values which
are quoted here. See also ref. 6.
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of eq. 7 to the melting points Tm of the mixtures,
i.e., to the temperatures for completion of melting
where 2; = 9,%.  Thus, given T for one mixture (as
required for evaluation of B), the broken lines are
prescribed by the dictates of phase equilibrium as
embodied in eq. 7. Excellent agreement up to de-
grees of crystallinity 1 — X in excess of 0.5 is evi-
dent. It is thus established that phase equilibrium
is by 1o means confined to very low degrees of crys-
tallinity. Deviations from equilibrium at tempera-
tures far below Tm, nevertheless are to be expected.

Conclusions.—An interspersion of crystalline and
amorphous regions which fails to meet the criteria
for representation as two discrete phases may in-
deed be of common occurrence in polymers rapidly
crystallized by uncontrolled cooling from the melt.
In addition to being imperfectly ordered, the crys-
talline regions in such systems may be separated
from adjoining amorphous material by ill-defined
boundaries. Whether or not this is the case is
largely a matter of conjecture. Marked departures
from equilibrium, however, are demonstrated un-
equivocally in polymers thus crystallized by their
susceptibility to recrystallization upon raising the
temperature and by their broad melting ranges.

As the results of the present investigation demon-
strate, stringent measures may be required to
achieve close approach to conditions of equilibrium
in semi-crystalline polymer systems. Requirements
in this regard are much more severe than in sub-
stances consisting of small molecules. This is a
consequence of the long relaxation times for dif-
fusive processes involving long polymer chains.
Yet, it is noteworthy that even in monomeric sub-
stances the characteristic discontinuity at the first
order transition may be obscured by rapid cooling
to frozen-in states of non-equilibrium, by imperfect
mixing, or by adventitious retention of impurities.
The difference in comparison with polymers is one
of degree. Departures from the precise require-
ments for phase equilibrium in semi-crystalline
polymers are more plausibly attributable to inade-
quacies of experimental procedure than to any in-
herency of substances consisting of macromolecular
chains.
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Free Diffusion in a Two-component System in which There Is a Volume Change on
Mixing
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For one-dimensional free diffusion in two-component systems in which volume changes occur on mixing, a formal series
solution to the diffusion equation is obtained correct up to terms of order (Ac)?, where Ac is the difference in concentration
across the initial sharp boundary. Equations are derived by which observed data for the reduced height-area ratio and
reduced second moment of the refractive index gradient curves can be used to evaluate the correct dependence on concentra-

tion of the diffusion coefficient.

For this calculation separate data are required for the partial specific volume of the solute

and the refractive index of the solution, both as functions of solute concentration.

Introduction
Assuming that the Fick first law is valid, Gosting
and Fujita® and Creeth and Gosting? have recently

(1) Department of Polymer Science, Osaka University, Nakano-
shima, Osaka, Japan.

discussed the effects of concentration dependence
of the diffusion coefficient and of non-linear con-
centration dependence of the refractive index of

(2) L.J. Gosting and H. Fujita, J. Am. Chem. Soc., 79, 1359 (1957).
(3) J. M. Creeth and L. J. Gosting, J. Phys. Chem., 62, 58 (1958).
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the solution upon optical mieasurements of free
diffusion in two-component systems (solvent —-
solute). The volume change which occurs on
mixing of the two components was neglected in
these treatments. A differential equation for de-
scribing one-dimensional diffusion in a binary
system which exhibits a volume change on mixing
has been derived by Prager,* but it appears that
no solution of this equation has yet been given.
More recently, Kirkwood, et al., have derived flow
equations for one-dimensional free diffusion in
multi-component systems where volume changes
occur on mixing. The flow equation of Prager
is shown to be included as a special case of these
more general equations of Kirkwood, et al.

The purpose of the present article is to incorporate
the volume change factor in the previous develop-
ment of Gosting and Fujita® for binary solutions
on the basis of the flow equation of Kirkwood,
et al. It is shown that observed data for the re-
duced height—area ratio and reduced second mo-
ment of the refractive index gradient curves can
be corrected for the volume change effect to de-
termine the dependence on concentration of the
diffusion coefficient referred to the volume-fixed
frame.

Theory

The Basic Equation.—For the development given
below we adopt a form of the flow equation of
Kirkwood, et al.,5 as the starting equation. When
it is substituted in the continuity equation we
have

2 _d d¢ x () Dv_ [\
a—a[DvanCf_m(Sc)l—ac(a) dx] (1)

Here x is the space codrdinate taken along the length
of the diffusion cell (its positive direction is upward
because equation 1 was derived assuming that the
flow vanishes at negative infinity of x), ¢ is the time
variable, ¢ is the concentration of the solute ex-
pressed in weight per unit volume of solution, 9
is the partial specific volume of the solute and Dv
is the diffusion coefficient of the system defined in
terms of the volume-fixed frame of reference.®
When 7 is constant, equation 1 reduces to the ordi-
nary diffusion equation for which detailed studies
may be found in ref. 2 and 3. Thus the second
term in the right-hand side of equation 1 represents
the effect arising from volume changes on mixing.

The initial condition chosen here corresponds to
that counsidered previously,?s.e.

(— o <2<0) (2)
0<x< =) (3)

c(x,0) = cp
c(x,0) = ca

In practice, it is necessary to place the less dense
solution above the more dense one so that gravi-
tational stability will be maintained during the
experiment. Hence for most cases Ac = ¢z —
ca > 0.

It is assumed that Dy is a function of ¢ only and
can be expanded in powers of ¢ — ¢ about the

(4) S. Prager, J. Chem. Phys., 21, 1344 (1953); see also J. Crank,
"“The Mathematics of Diffusion,” Oxford Univ. Press, London, 1956,
pp. 236-237.

(5) J. G. Kirkwood, R. L. Baldwin, P. J. Dunlop, L. J. Gosting and
G, Kegeles, J. Chem, Phys., 88, 1505 (1960).

(8) R. P, Wendt and L. J. Gosting, J. Phys. Chem., 63, 1287 (1959).
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mean concentration ¢ of the starting solutions.
Thus

Dvy(e) = Dy(c) (1 + bilc — &) + kelc — )2+ ...]1 (4)
where
¢ = (ca +cB)/2 (8)

In equation 4, Dv(c) is the value of Dy at ¢ = ¢

and the coefficients k;, k., etc. stand for

ki = [(1/Dy)dDv/dc)leaz, k2 = [(1/2!Dv)(d2Dv/dc?)]emiy - - -
(6)

These coefficients generally vary with ¢.

The partial specific volume #(c) as a function of
¢ may also be expanded in powers of ¢ — ¢, giving

ve) =@l +mlc—¢a) +mlc—cr+...1 (7)
Here 9(¢) is the value of § at ¢ = ¢ and the coef-
ficients my, m,, etc., are defined by

my = [(1/0)0(d5/de) lomz, m2 = [(1/2%)(d%/de?) emsy ... (8)

In general, these m; (z = 1, 2, ...) are functions of c.

Thus the problem is to solve equation 1 subject
to conditions 2 and 3 with the functional forms of
Dy aud 7 given, respectively, by equations 4 and 7.

A Series Solution of Equation 1.—As in the case
previously treated by Gosting and Fujita,? equa-
tion 1 may be integrated by using the method of
successive approximations. To do this we first
introduce the Boltzmann variable z defined by

z = x/2[Dv(e)t]'/s (9

Then equation 1, after substituting for Dy and v

from equations 4 and 7, is shown to become

o de _dy
dz dz {

prout +66) [

d
1+ ap + et + .15 +

(14+gBp+ .. M1+ (2p/p1)Be+...]
1 — (1 4+ 86)1 + piBe + ...)

de\2, )
(&) ds; (10)
where ¢ is the reduced concentration defined as
= 2(c — ¢)/Ac (11)

aud 8, v, clc., are the dimensionless parameters
defined as

8 = Ac/2¢ (12)
v = b(e)E (18)
o= mc (14)
Do = myl? (15)
q = ke (16)
gz = hot? (17)

In terins of ¢ and z conditions 2 and 3 may be ex-
pressed as

p(z)—=1(z—> — =)
#(z) > —1(g— )

(18)
(19)

If the magnitude of Ac is sufficiently small, the
desired solution for ¢ may be expanded in powers
of Ac. This is equivalent to assuming that ¢
may be expressed as a power seriesin 8 as

#(2) = ¢u(2) + Bou(z) + Be(z) + ... (20)

where each ¢i(z) (+ = 0, 1, ...) is a function of z
to be determined from equation 10 and accom-
panying boundary conditions 18 and 19. In-
troducing equation 20 into equation 10, expanding
both sides of the resulting expression in powers of
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B and equating the coefficients of equal powers of
B, we obtain a set of differential equations.

d*y deo _ 2
a0 @
d’¢ d¢ de :
T TEE T dz2 (60" = W ( 9) (22)
dor |y dor _

352 - a d_z2 (o) 3 d22 (¢0

z dey deyo de o
Xplla'zl:%f_ ( > :I+2dzdz + A (1
p1) o (%?) ¢~ Mo+ 2pa)do (dfo> (23)
Here M\ is a dimensionless parameter defined by

A= /(1= ) (24)
Differential equations for ¢; of higher orders may
be derived, but in the present treatmient we shall
be interested in evaluating the expression of ¢
correct up through the term ¢, It should be
noted that in the previous work of Gosting and
Fujita? for diffusion involving no volume change on
mixing a similar calculation was extended up to
the term corresponding to ¢; in the expansion 20.
The boundary conditions for the ¢i(z) are de-
rived by substituting equation 20 into equations
18 and 19 and observing that these relations must
be satisfied regardless of the value of 8. The
results are
dolz) > 1(s—> — =)
#o(z) = — 1 (3= @)}
¢i(2) >0 (z > — =)I
#i(z) >0 (z—> =)

The above set of ordinary differential equations
of the second order for ¢;(z) may be solved suc-
cessively from top to bottom under the boundary
conditions given by equations 25 and 26. The
results of these calculations are

(23)

Gzl (26)

ous) = — @ (27)
deo(2)/ds = — @’ (28)
oz = — (q/H)[2® + 250’ + (¥')2 — 2] +
(pr/2)(1 —~ @) (29)
déi(z)/dz = — (¢1/2)®'[(3 — 237)d ~ 2d'] —
A @ (30)
dén(2)/dz = — (:2/8)®'[(21 — 2422 + 4~4)q>2 -
(10 — 4570’ + (1 + 22)(@')? — (6 —
6+/3/m)] + (g/12)@'[(18 — 12z2)<1>2 — 12280 —
3(@)2 — (4 — 12473/7)] + (Ap/12)@' [B(1 + X —
Ap1)®? + 120/ 2/72@(v/25) 4 3(®')? + 124/ 2/ —

21 4+ N~ Apr + 6+4/8/7)] = (i /24)27[(66 —
36522 — 12:08" + 3(0°)% + 1252 + (124/3/7 —
22)] — (Ap/8)®'(1 — 3d%) (31)
Here
¢ = (2/+7) j;z exp (—22)ds (32)
& = (2/4/7) exp (— 22) (33)
The expression for ¢, is 110t showu here because it
is not required in deriving subsequent equations.
The Refractive Index Gradient Distribution.-—As
inn the previous paper of Gosting and Fujita,® we
assume that the refractive index, #, of the solution
as a function of solute concentration ¢ can be ex-
pressed in a series form as
+ Rle =il +alc =) +alc =P+ ... ]
(34)

n(c) = n(e)
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where
R = (dn/dc), -;
= {[1/(2! R)[(d*n/deM)]e -,
ar = {[1/8! R))(d*n/de®)}cmpy ... (35)

In general these coefficients vary with ¢ and their
values can be determined from direct optical
measurements or as auxiliary data from optical
diffusion experiments.

Equation 34 may be written in terms of ¢ by
using equation 11

n(c) = n() + R(Ac/2){p + B41g* + S2dep® + ... ] (36)
where

Ao = a8, Ay = wé,? elc. (37)
These .1;, .1y, ¢tc., are dimensionless quantities,

Introduction of equation 20 into equation 36 and
rearrangement of the resulting equation in powers
of 8 yields

n(c) = n(e) + R(Ac/2)[po + B(d1 + Aide®) +
B2 + 24A1g0¢n + A2de®) + ... ] (38)

Differentiation of this equation with respect to x
gives the expression for the refractive index gradient
distribution along the length of the diffusion cell
(for fixed values of ¢ and Ac). In terms of z it
may be written

d _  RAc deo de deo
S 4[D QDL I: + B( + 24:1¢ P > +

B8 (dd’) + 241 d¢0

+ 24:1¢1 by + 342 Elio) + . —‘
(39)

We see that the equation for ¢, is not required for
obtaining the refractive index gradient correct
up to the order of (Ac)?

The Reduced Height-Area Ratio and Reduced
Second Moment of the Refractive Index Gradient
Distribution.~—The reduced height-area ratio,
Da. of the refractive index gradient curve is defined
by?

C1¢1

(1B = mna)? (40)

DA i on 0% e

Here ng — na represents the refractive index dif-
ference between the starting solutions of concentra-
tions ¢y and cg; by using equation 36 and re-
membering conditions 18 and 19 we have

ny — na = R(AC[1 + 824, + 0(84)] (41)

The value of vat which [On Ox}reaches its maxinium,
|00 nax. can be obtained in the formn of a power
series in 3 by using the procedure described previ-
ously.? The result is

g = (BTN + Ap — 24y) 82 + 08

(42)

— (\o/V'2n

where s, is the value of z corresponding to the value
of x in question. From equation 42 one finds that
when 7 varies with ¢, there appears a second order
(in (Ac¢)) shift in the position of the maximum
refractive index gradient from the initial boundary
position (x = 0). The maximum refractive index
gradient can be obtained by introducing equation
42 into equation 39, vielding
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1 0% | max

- Rac | éz[ 1,2
R AR Rl

(r — 6) A+ @_i_?»_\f» —3m) 0

" RNCAYE 66+ e Th R

N6 — 7)
6
AM6v/3 + 30 — 117)
12

The desired expression for Da then is obtained by

substituting equations 41 and 43 into equation 40.

In the form of a power series in Ac (instead of 3)
it reads

b+ AMr — 4)pdr +

piqr + %r Pz:l + O(Bs)i‘ (43)

Dy = Dy(e) {1 — K(ac)? + 0(ac)*]} (44)
where
K = Kp + Ky + Kr + Kx (45)
with
Kp = [(6 + 33 — 3r)/8x )k +
[(r —3V/3 4 3)/6rlk: (46)

Ky = [A[=(1 + ) + 6+/8 — 8]/127}(m/c) +
(8 — 7)/127]m? + (N/6)ma (47)
Kr = (2/m)a? — (1/2)a; (48)

Ky = [(= — 8)/27]aiks + M7x — 4)/27)aym +
A6V3 + 30 — 11x)/24r)kim  (49)

The first three of these four coefficients represent
the individual contributions to K from the concentra-
tion dependences of Dv, of 7 and of #, respectively
while the last one gives the contribution from the
first order couplings of these three factors.

The reduced second moment, Dom, of the re-
fractive index gradient curve is defined by?

1 e Om
R Nl I
Substitution of equations 39 and 41 and integration
leads to

(50)

Do = Dy(2) {1 — L(4c)? + O[(ac)®l}  (51)
where
L=1Ip+ Lv + Lz + Ly (52)
with
Ly = — (1/12)k (53)

Lyv = + M3 + MN/4xV3](m/) —

(N2/47/3) w4+ (V270 3)ine (54)
— (V3/27)2 (55)
Ly = — (1/8)a:ki + OV3/20)amy  (56)

Thus, as in the corresponding coefficient K for
Da, the coefficient L for Dym is separated into four
factors; the first three of them represent the in-
dividual effects from the concentration dependences
of Dv, of ¢ and of #, while the last one, L, is the
contribution from the first order couplings of
these three factors.

Finally, it should be remarked that the preced-
ing equations for Da and Dum reduce to the cor-

Ly =
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responding equations derived in the previous paper?
when m; and m, are set equal to zero, %.e., when
the concentration dependence of the partial specific
volume of the solute is neglected. This is ex-
pected because the present calculation is based on
the same method of solution as that employed pre-
viously.
Discussion

Equations 44 and 51 indicate that for sufficiently
small values of Ac Da and Dym at a given value of ¢
vary linearly with the square of Ac. Similar types
of dependence of Da and Dem on (Ac)? have been
obtained previously? for the case where no volume
change occurs on mixing. Thus we see that to
the degree of approximation up to the order of
(Ac)? the volume change on mixing does not affect
the qualitative fashion in which both Da and Dem
depend upon the concentration difference across
the initial boundary. However, the slopes of the
predicted straight lines are altered by the volume
change effect, as seen from the expressions for K
and L derived above,

As noted above, the values of a; and a; at the
given value of ¢ may be obtained from direct optical
measurements or as auxiliary data from optical
diffusion experiments. The quantities 9(¢) (and
hence \), m; and m; may be evaluated from ac-
curate density measurements over a range of con-
centration encompassing the given mean concen-
tration. On the other hand, the values of Dv(¢),
K and L are determined from plots for Da us.
(Ac)? and Dom vs. (Ac)?, in accordance with equa-
tions 44 and 51; to obtain these plots diffusion
experiments must be performed for several dif-
ferent values of Ac at the given value of . When
the values of ay, as, A\, m1, s, K and L so obtained
are inserted into equations 45 and 52, we obtain
a set of equations which may be solved for %
and k;. Substitution of these values of k; and k;,
together with the value of Dvy(¢) obtained experi-
mentally, into equation 4 then allows us to calcu-
late Dv as a function of ¢ throughout the range of
¢ in which terms higher than the order of (¢ — ¢)?
may be neglected in comparison with unity.
In this way the observed data for Da and Doy as
functions of Ac (at a fixed ¢) may be used to de-
termine the dependence of the diffusion coefficient
(referred to the volume-fixed frame) upon solute
concentration, even when the system exhibits vol-
ume change on mixing, provided that the data for
7(c) are available. It 1s hoped that the theory
described in this paper will aid in imore accurate
evaluation of the diffusion coefficients for two-
component systems from optical diffusion measure-
ments.
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